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Effect of radiative heat loss on steady hypersonic 
flow past a blunt body 

By M. I. G. BLOOR 
Department of Mathematics, University of Leeds 

(Received 14 November 1966) 

Using the grey gas approximation, the effect of radiative heat loss on axially 
symmetric flows is studied. Using an expansion procedure about the axis of sym- 
metry, a numerical solution for the stagnation region is found taking the shock 
to be spherical. The results of this calculation are compared with the results of 
Lighthill's non-radiative constant density solution. 

1. Introduction 
In  hypersonic flow past a blunt body there appears in front of the body a strong 

shock across which the kinetic energy of the incident stream is greatly reduced. 
As a result the temperature of the gas increases, and for sufficiently large values 
of the mainstream velocity, the loss of energy by radiation becomes important. 

Goulard (1962) has shown by a dimensional analysis of the shock layer that two 
parameters determine the nature of the flow. These are the characteristic optical 
length 7, of the system, defined by 

To = koL, 

where k, denotes a typical value of the volumetric absorption coefficient of the 
gas and L is a typical length, and the radiation convection ratio r. When T, is 
small, that is when the amount of radiation absorbed by an element of gas from 
the surrounding gas is small compared with the amount of radiation emitted by 
this element, I? is defined by 

4vko LT; r = -  
Po'uoio ' 

where the suffix 0 indicates some arbitrary reference state. The quantities p, T ,  
u, i and v denote density, temperature, velocity, enthalpy and the Stefan Boltz- 
mann constant respectively. 

For the hypersonic detached shock layer the most convenient reference state 
to choose is that of the gas immediately behind the shock for the radiationless 
solution, taking L to be the stand-off distance A. In  this case r is given by 

4ak AT4 r = s s  
+Pa E3 ' 

where the suffix 03 refers to the uniform conditions in the main-stream. 

radiationless solution to apply, and 
Goulard (1964) has considered the cases when is sufficiently small for the 

< 1 when a perturbation scheme is ade- 



486 M .  I .  G. Bloor 

quate. Kennet (1962) has argued from the results of Bird (1960) that the intro- 
duction of a radiation loss term into the energy equation has little effect on the 
velocity distribution in the shock layer. Using Lighthill’s (1957) constant density 
solution for the velocity distribution he determined the radiation lost by the gas. 
However, it seems that this approach can be considered only for 

In  the problem considered here, the gas is assumed to be optically thin while 
the radiation-convection ratio I’ is taken to be of order unity. Goulard (1961) has 
shown that such flight conditions as these might be encountered by a ‘Mars 
probe’ re-entering the earth’s atmosphere. The gas is assumed to be perfect and 
the flow is axially symmetric although the analysis could easily be extended to 
include plane symmetric flows. A solution for the stagnation region is presented. 

The gas is assumed to be grey. This means that the volumetric absorption co- 
efficient is taken to be independent of the frequency of the radiation. In  general 
this is an approximation which, for practical purposes, must be regarded with 
suspicion. However, in this case it will be seen that the radiative heat loss term is 
of the form found empirically by Thomas (1962). 

In the stagnation region the shape of the shock is assumed to be spherical. The 
absorption by the gas of radiation from the body surface is included in the 
analysis, and the resulting differential equations are solved numerically. The 
solution is presented in graphical form in Q 4 and compared with the radiationless 
solution of Lighthill. 

0. 

2. The equations of motion 

tion of state takes the form 
It is assumed that the radiating gas behaves like a perfect gas so that the equa- 

P = pT, (2.1) 

using a suitable choice of units. Also, the specific enthalpy i is given by 

where y is the ratio of specific heats of the gas and is assumed to be constant. 
In  practice, the gas will certainly not behave like a perfect gas. Goulard (1963) 

has considered an ideal planetary entry atmosphere not unlike the ear6h’s atmo- 
sphere for altitudes less than 105ft. In this model, the specific enthalpy was taken 
to be proportional to the square of the temperature, there being only a slight de- 
pendence on the density. Consequently, it can be seen from (3.7) that the effect of 
taking the gas to be perfect instead of behaving like the gas of Goulard’s ideal 
atmosphere, is to increase the exponent of T by one. However, it  can be seen 
from the results in Q 4 that variations with respect to p are of secondary import- 
ance compared with variations in r or the density ratio across the shock. 

It has been shown (Goulard 1962; Chandrasekar 1960) that the effect of the gas 
radiating is to introduce three characteristic quantities of the radiation into the 
usual conservation equations of Auid dynamics. These three characteristic 
quantities are: the radiative stored energy UR,  the radiative pressure tensor 
p g ,  and the energy flux vector FR. However, Goulard (1962) has found that for 
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most aerodynamic purposes U R  andpE are negligible compared with the internal 
energy per unit volume of the gas and the usual hydrodynamic pressure tensor 
Pip 

Hence, assuming that the gas is inviscid, the momentum equation may be 
written 

Dv 1 -+- v p  = 0, 
Dt P 

where v is the velocity. The continuity equation for steady flow is 

v. (pv) = 0, 
and the energy equation is 

Di Dp 
Dt  Dt 

p---= - V . F R .  

The gas is assumed to be 'grey' and non-scattering and to be in local thermo- 
dynamic and chemical equilibrium. The surface of the body is assumed to radiate 
like a black body and to absorb all the radiation incident on it. Under these 
assumptions the divergence of the radiation flux vector becomes, using Goulard's 
notation, 

* 477 
where B is the Planck function defined by 

B = C T ~ I ~ ,  (2.7) 

and M is the point of interest in the gas. The line M P  cuts either the body or the 
shock in Q.  Also, rkP and rfrs are optical lengths based on M P  and MQ respect- 
ively. 

It can be seen that the three terms on the right-hand side of (2.6) represent the 
energy per unit volume emitted by an element of gas at  M ,  the energy absorbed 
by this element from the surrounding gas and from the surface of the body. 

If the gas is assumed to be optically thin, the second term on the right-hand 
side of (2.6) can be neglected in comparison with the first. Also, the third term 
may be taken as 2B(&) for the stagnation region, assuming that the temperature 
of the body surface is constant and that the shock layer is thin compared with the 
dimensions of the body, there being no source of radiation ahead of the shock. 

Using available numerical data Thomas (1962) found that, for air, the rate of 
heat loss per unit volume due to radiation was proportional to paTP where 
a = 1.28 and /3 = 10-54. Consequently, the volumetric absorption coefficient for 
this problem is taken to be of the form 

k cc p' TP--4. (2.8) 

Hence V . F R  = R'paTP-4(T4-C4), (2.9) 

where R' and C are constants and C is 2-4 times the temperature of the surface of 
the body. 
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It is usual to assume that the temperature of the body is so low that the third 
term on the right-hand side of (2.6) can be neglected. However, in this treatment 
of the problem the term is retained since no other mechanism for supplying the 
gas with energy is considered. Hence, at the stagnation point where the gas is 
stationary the temperature would drop unrealistically if the term were omitted. 

If the suffix s denotes conditions immediately behind the shock and the suffix 
co refers to the uniform conditions in the mainstream, the usual strong shock 
conditions for hypersonic flow are 

and 

I uts = u, cos @, 

2 
p s  = -pm Uzsin20 

Y + l  

(2.10) 

(2.11) 

The quantities u, and ui are the velocity components normal and tangential to 
the shock surface respectively, and 0 is the inclination of the shock to the main- 
stream. 

3. Method of solution 
The equations are to be solved in the neighbourhood of the front stagnation 

point. This region is not only important from the point of view of radiative heat 
transfer but also a solution for this region will determine the shock stand-off 
distance, one of the more easily measurable quantities in hypersonic flow past a 
blunt body. There will be no great loss of generality if the shock is assumed to be 
spherical in the region of interest. This assumption also has the advantage that 
the solution can be compared with that which Lighthill obtained for a non- 
radiating gas. 

The non-dimensional flow variables are denoted by a prime and are defined by 

V' = vlUm, p' = plpm U z ,  T' = T / U L ,  

P' = PIP,, 1c.' = 1c.lPWumR: 
and o' = wR,/U,, where R, is the radius of curvature of the shock and o is the 
vorticity, II. being a stream function. 

Spherical polar co-ordinates ( r ,  8, A )  are used with the line 8 = 0 pointing up- 
stream so that for axially symmetric flow there is no h dependence. The length t+ 
is non-dimensionalized, hence 

r f  = r/Rs, 

and the origin of the co-ordinate system is chosen so that the shock is given by 
r' = 1. 

There is no confusion if the primes which denote non-dimensionalized quanti- 
ties are henceforward omitted. 
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The equation of motion (2.3) may be written in the invariant form, 

P(WhV)+pV(gV2) = -Vp, (3.1) 

where o = curl v. Since the flow is axially symmetric w, = wg = 0, and 

1 8  1 av, 
wA = ~ - ( r v o ) - - - ,  

r ar r a0 

where the suffices r ,  O and h refer to the r ,  0 and h components. 

equation, and the result is 
The pressure term can be eliminated from (3.1) simply by taking the curl of the 

curl [ p ( o  A v)] + curl [pV(+v2)] = 0. 

In  the co-ordinate system chosen, this becomes 

a~ v e a ~  P a P a  w v - + wA - - + - -- (rw,v,,) + - - (wAvg) 
,I r a6 r a r  r a0 

Also, the continuity equation (2.4) is 

a a 
- (pr2  sin Ov,) + - (pr  sin 6vs) = 0, 
ar ae (3.4) 

and, using this, (3.3) may be simplified to give 

In  addition, the r-component of (3.1) is used, that is, 

1 82) 
- w*vg + - [&(?I; + v;)] = - - - . a 

ar P 
(3.6) 

Using the relations (2.2) and (2.9) the energy equation (2.5) becomes 

where R' is a non-dimensional parameter corresponding to R and in fact 

taking A for the radiationless solution to be (y - 1) R,/(y + 1). 

Hence @ is defined by 
A streamfunction, $ is introduced to satisfy the continuity equation (3.4). 

and 
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In  principle, (3.5) to (3.8) are soluble using (3.2) for oh and (2.1) to relatep, p 

The shock conditions (2.11) become 
and T .  

and 

vos = sin0, I 
I 

In  the neighbourhood of the stagnation region 8 is small, and hence an expan- 
sion of the flow variables in terms of 6' is used. This expansion procedure has the 
advantage that a solution for the leading terms will give the value o f  the shock 
stand-off distance. Also, variations with respect to  6' are small compared with 
variations with respect to r ,  so that the leading terms should give an adequate 
solution small distances from the axis. 

It follows from the symmetry of the flow that the relevant expansions are 

(3.10) 

and $ = $o(r)82 + O(04).) 
It can be seen from (3.8) that the components of velocity may be expressed in the 
form 

(3.11) 

and v =--- "@; + O(02). (3.12) 

Hence, using (3.2), oh is given by 
P o Y  

(3.13) 

where it has been assumed that the rates of change with respect to r are much 
greater than those with respect to 8. 

Using (3.10) to (3.13), equation (3.5) may be written 

(3.14) 

where approximations consistent with those in equation (3.13) have been made. 
Also, (3.6) and (3.7) become 

(3.15) 

using equation (2.1). 
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FIGURE 1. @o as a function of v for various values of y with A = 4 and p = 10. 
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FIGURE 2. The stand-off distance, A, as a function of /3 for various values of y with A = 3. 
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FIGURE 3. The stand-off distance, A, as a function of A for y = 1.1, 1-2 and 1.4 withp = 10. 
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FIGURE 4. The stand-off distance, A, as a function of (y + l)/(y - 1) for various values of A 
with p = 10, compared with the radiationless solution of Lighthill (1957). 
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These three equations for $o, po and To are now expressed as five first-order 
differential equations and using the conditions at the shock are solved numeri- 
cally on the BDF 9 computer by the Runge Kutta Merson method. 
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FIGURE 5 .  The temperature distribution on the axis of symmetry, T&), for various values 
of ,L? and A with y = 1.4. 
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FIGURE 6. T ( r ) / T ( l )  plotted for y = 1.1, 1.2, 1.3 and 1-4 with A = 0.5 and ,L? = 6. 

4. The numerical results 

of p and A where A is given by 
The equations (3.14) to (3.16) are solved for G = *To,, cz = 1 and various values 

Hence, if A is O( l), the radiation convection ratio is also O( 1). 
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In  figure 1,  II., is plotted against r for different values of y with A = 9 and 
/3 = 10. From this the shock stand-off distance can be determined, that is, the 
value of 1 - r for which $,, = 0. The shock stand-off distance is also evaluated for 
other values of A and p. The variations with /3 and with A for constant y are 
shown in figures 2 and 3 respectively. In  figure 4, the shock stand-off distance is 
shown as a function of y for constant A and ~3 and compared with the results of 
Lighthill. 

The effect of allowing radiative heat loss is to reduce the stand-off distance. 
This is simply because the velocities in the stagnation region are small so that the 
pressure variations are correspondingly small; hence, the fall in temperature due 
to the heat lost produces a rise in the density. The rise in the density reduces the 
stand-off distance which is essentially determined by the mass flow. 

The temperature distribution on the axis of symmetry is shown as a function 
of A ,  /? and y in figures 5 and 6. 

The very rapid decrease in the temperature of the gas near the body is due to 
the fact that the surface temperature of the body was chosen to be significantly 
less than the temperature of the gas immediately behind the shock, and that heat 
conduction has been neglected. In  practice this very rapid rate of change of 
temperature is smoothed out across a boundary layer. 
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